Skip to main content
Logo image

Section 2.4 Transformation of Functions (FN4)

Subsection 2.4.1 Activities

Remark 2.4.1.

Informally, a transformation of a given function is an algebraic process by which we change the function to a related function that has the same fundamental shape, but may be shifted, reflected, and/or stretched in a systematic way.

Activity 2.4.2.

Consider the following two graphs.
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output

Activity 2.4.3.

Consider the following two graphs.
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output

Definition 2.4.5.

Given a function \(f(x)\) and a constant \(c\text{,}\) the transformed function \(g(x)=f(x)+c\) is a vertical translation of the graph of \(f(x)\text{.}\) That is, all the outputs change by \(c\) units. If \(c\) is positive, the graph will shift up. If \(c\) is negative, the graph will shift down.

Activity 2.4.6.

Consider the following two graphs.
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output

Activity 2.4.7.

Consider the following two graphs.
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output

Definition 2.4.9.

Given a function \(f(x)\) and a constant \(c\text{,}\) the transformed function \(g(x)=f(x+c)\) is a horizontal translation of the graph of \(f(x)\text{.}\) If \(c\) is positive, the graph will shift left. If \(c\) is negative, the graph will shift right.

Activity 2.4.10.

Describe how the graph of the function is a transformation of the graph of the original function \(f\text{.}\)

Activity 2.4.11.

For each of the following, use the information given to find another point on the graph.

Activity 2.4.12.

Consider the following two graphs.
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output

Activity 2.4.13.

Consider the following two graphs.
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output

Remark 2.4.14.

Notice that in ActivityΒ 2.4.12, the \(y\)-values of the transformed graph are changed while the \(x\)-values remain the same. While in ActivityΒ 2.4.13, the \(x\)-values of the transformed graph are changed while the \(y\)-values remain the same.

Definition 2.4.15.

Given a function \(f(x)\text{,}\) the transformed function \(g(x)=-f(x)\) is a vertical reflection of the graph of \(f(x)\text{.}\) That is, all the outputs are multiplied by \(-1\text{.}\) The new graph is a reflection of the old graph about the \(x\)-axis.

Definition 2.4.16.

Given a function \(f(x)\text{,}\) the transformed function \(y=g(x)=f(-x)\) is a horizontal reflection of the graph of \(f(x)\text{.}\) That is, all the inputs are multiplied by \(-1\text{.}\) The new graph is a reflection of the old graph about the \(y\)-axis.

Activity 2.4.17.

Consider the following graph of the function \(f(x)\text{.}\)
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output
(b)
Which of the following represents the graph of the transformed function \(g(x)=-f(x+2)+3\text{?}\)
  1. Diagram Exploration Keyboard Controls
    Key Action
    Enter, A Activate keyboard driven exploration
    B Activate menu driven exploration
    Escape Leave exploration mode
    Cursor down Explore next lower level
    Cursor up Explore next upper level
    Cursor right Explore next element on level
    Cursor left Explore previous element on level
    X Toggle expert mode
    W Extra details if available
    Space Repeat speech
    M Activate step magnification
    Comma Activate direct magnification
    N Deactivate magnification
    Z Toggle subtitles
    C Cycle contrast settings
    T Monochrome colours
    L Toggle language (if available)
    K Kill current sound
    Y Stop sound output
    O Start and stop sonification
    P Repeat sonification output
  2. Diagram Exploration Keyboard Controls
    Key Action
    Enter, A Activate keyboard driven exploration
    B Activate menu driven exploration
    Escape Leave exploration mode
    Cursor down Explore next lower level
    Cursor up Explore next upper level
    Cursor right Explore next element on level
    Cursor left Explore previous element on level
    X Toggle expert mode
    W Extra details if available
    Space Repeat speech
    M Activate step magnification
    Comma Activate direct magnification
    N Deactivate magnification
    Z Toggle subtitles
    C Cycle contrast settings
    T Monochrome colours
    L Toggle language (if available)
    K Kill current sound
    Y Stop sound output
    O Start and stop sonification
    P Repeat sonification output
  3. Diagram Exploration Keyboard Controls
    Key Action
    Enter, A Activate keyboard driven exploration
    B Activate menu driven exploration
    Escape Leave exploration mode
    Cursor down Explore next lower level
    Cursor up Explore next upper level
    Cursor right Explore next element on level
    Cursor left Explore previous element on level
    X Toggle expert mode
    W Extra details if available
    Space Repeat speech
    M Activate step magnification
    Comma Activate direct magnification
    N Deactivate magnification
    Z Toggle subtitles
    C Cycle contrast settings
    T Monochrome colours
    L Toggle language (if available)
    K Kill current sound
    Y Stop sound output
    O Start and stop sonification
    P Repeat sonification output
  4. Diagram Exploration Keyboard Controls
    Key Action
    Enter, A Activate keyboard driven exploration
    B Activate menu driven exploration
    Escape Leave exploration mode
    Cursor down Explore next lower level
    Cursor up Explore next upper level
    Cursor right Explore next element on level
    Cursor left Explore previous element on level
    X Toggle expert mode
    W Extra details if available
    Space Repeat speech
    M Activate step magnification
    Comma Activate direct magnification
    N Deactivate magnification
    Z Toggle subtitles
    C Cycle contrast settings
    T Monochrome colours
    L Toggle language (if available)
    K Kill current sound
    Y Stop sound output
    O Start and stop sonification
    P Repeat sonification output
Answer.

Remark 2.4.18.

Notice that in ActivityΒ 2.4.17 the resulting graph is different if you perform the reflection first and then the vertical shift, versus the other order. When combining transformations, it is very important to consider the order of the transformations. Be sure to follow the order of operations.

Activity 2.4.19.

Consider the following two graphs.
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output

Activity 2.4.20.

For each of the following, use the information given to find another point on the graph.

Activity 2.4.21.

Consider the following two graphs.
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output

Activity 2.4.22.

Consider the following two graphs.
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output

Definition 2.4.24.

Given a function \(f(x)\text{,}\) the transformed function \(g(x)=af(x)\) is a vertical stretch or vertical compression of the graph of \(f(x)\text{.}\) That is, all the outputs are multiplied by \(a\text{.}\) If \(a \gt 1\text{,}\) the new graph is a vertical stretch of the old graph away from the \(x\)-axis. If \(0 \lt a \lt 1\text{,}\) the new graph is a vertical compression of the old graph towards the \(x\)-axis. Points on the \(x\)-axis are unchanged.

Definition 2.4.25.

Given a function \(f(x)\text{,}\) the transformed function \(g(x)=f(ax)\) is a horizontal stretch or horizontal compression of the graph of \(f(x)\text{.}\) That is, all the inputs are divided by \(a\text{.}\) If \(a \gt 1\text{,}\) the new graph is a horizontal compression of the old graph toward the \(y\)-axis. If \(0 \lt a \lt 1\text{,}\) the new graph is a horizontal stretch of the old graph away from the \(y\)-axis. Points on the \(y\)-axis are unchanged.

Remark 2.4.26.

We often use a set of basic functions with which to begin transformations. We call these parent functions. A library of these is collected in SectionΒ A.1, but here are a few of the most common ones.
Figure 2.4.27. Graph of \(f(x)=x\)
Figure 2.4.28. Graph of \(f(x)=x^2\)
Figure 2.4.29. Graph of \(f(x)=|x|\)
Figure 2.4.30. Graph of \(f(x)=\sqrt{x}\)
Figure 2.4.31. Graph of \(f(x)=x^3\)
Figure 2.4.32. Graph of \(f(x)=\dfrac{1}{x}\)
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output

Activity 2.4.33.

Consider the function \(g(x)=3\sqrt{-x}+2\)
(b)
Graph the parent function \(f(x)\text{.}\)
Answer.
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output
(d)
Graph the transformed function \(g(x)\text{.}\)
Answer.
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output

Activity 2.4.34.

Consider the following graph of the function \(g(x)\text{.}\)
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output

Activity 2.4.35.

For each of the following, write a formula for the new function \(g(x)\) when the graph of \(f(x)\) is transformed as described.

Subsection 2.4.2 Exercises