Skip to main content
Contents
Dark Mode Prev Up Next
\(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 2.4 Transformation of Functions (FN4)
Objectives
Apply transformations including horizontal and vertical shifts, stretches, and reflections to a function. Express the result of these transformations graphically and algebraically.
Subsection 2.4.1 Activities
Activity 2.4.2 .
Consider the following two graphs.
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
(a)
How is the graph of \(f(x)+1\) related to that of \(f(x)\text{?}\)
Activity 2.4.3 .
Consider the following two graphs.
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
(a)
How is the graph of \(f(x)-2\) related to that of \(f(x)\text{?}\)
Shifted right
\(2\) units
Definition 2.4.5 .
Given a function
\(f(x)\) and a constant
\(c\text{,}\) the transformed function
\(g(x)=f(x)+c\) is a
vertical translation of the graph of
\(f(x)\text{.}\) That is, all the outputs change by
\(c\) units. If
\(c\) is positive, the graph will shift up. If
\(c\) is negative, the graph will shift down.
Activity 2.4.6 .
Consider the following two graphs.
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
(a)
How is the graph of \(f(x+1)\) related to that of \(f(x)\text{?}\)
Activity 2.4.7 .
Consider the following two graphs.
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
(a)
How is the graph of \(f(x-2)\) related to that of \(f(x)\text{?}\)
Definition 2.4.9 .
Given a function
\(f(x)\) and a constant
\(c\text{,}\) the transformed function
\(g(x)=f(x+c)\) is a
horizontal translation of the graph of
\(f(x)\text{.}\) If
\(c\) is positive, the graph will shift left. If
\(c\) is negative, the graph will shift right.
Activity 2.4.10 .
Describe how the graph of the function is a transformation of the graph of the original function
\(f\text{.}\)
(a)
\(f(x-4)+1\)
Shifted right
\(4\) units
(b)
\(f(x+3)-2\)
Shifted right
\(3\) units
Activity 2.4.11 .
For each of the following, use the information given to find another point on the graph.
(a)
If \((2,3)\) is a point on the graph of \(f(x)\text{,}\) what point must be on the graph of \(f(x)+2\text{?}\)
(b)
If \((-1,6)\) is a point on the graph of \(g(x)\text{,}\) what point must be on the graph of \(g(x-4)\text{?}\)
\(\displaystyle (-1,10)\)
(c)
If \((-2,-5)\) is a point on the graph of \(h(x)\text{,}\) what point must be on the graph of \(h(x+1)-5\text{?}\)
\(\displaystyle (-3,-10)\)
\(\displaystyle (-1,-10)\)
Activity 2.4.12 .
Consider the following two graphs.
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
(a)
How is the graph of \(-f(x)\) related to that of \(f(x)\text{?}\)
Reflected over the
\(x\) -axis
Reflected over the
\(y\) -axis
Shifted right
\(2\) units
Activity 2.4.13 .
Consider the following two graphs.
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
(a)
How is the graph of \(f(-x)\) related to that of \(f(x)\text{?}\)
Reflected over the
\(x\) -axis
Reflected over the
\(y\) -axis
Definition 2.4.15 .
Given a function
\(f(x)\text{,}\) the transformed function
\(g(x)=-f(x)\) is a
vertical reflection of the graph of
\(f(x)\text{.}\) That is, all the outputs are multiplied by
\(-1\text{.}\) The new graph is a reflection of the old graph about the
\(x\) -axis.
Definition 2.4.16 .
Given a function
\(f(x)\text{,}\) the transformed function
\(y=g(x)=f(-x)\) is a
horizontal reflection of the graph of
\(f(x)\text{.}\) That is, all the inputs are multiplied by
\(-1\text{.}\) The new graph is a reflection of the old graph about the
\(y\) -axis.
Activity 2.4.17 .
Consider the following graph of the function
\(f(x)\text{.}\)
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
(a)
How is the graph of \(-f(x+2)+3\) related to that of \(f(x)\text{?}\)
Reflected over the
\(x\) -axis
Reflected over the
\(y\) -axis
(b)
Which of the following represents the graph of the transformed function \(g(x)=-f(x+2)+3\text{?}\)
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
Activity 2.4.19 .
Consider the following two graphs.
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
(a)
How is the graph of \(g(x)\) related to that of \(f(x)\text{?}\)
Reflected over the
\(x\) -axis
Reflected over the
\(y\) -axis
Shifted right
\(4\) units
(b)
List the order the transformations must be applied.
Answer .
Reflect over the
\(y\) -axis and then shift up
\(4\) units.
(c)
Write an equation for the graphed function \(g(x)\) using transformations of the graph \(f(x)\text{.}\)
\(\displaystyle g(x)=-f(x)+3\)
\(\displaystyle g(x)=f(-x)+3 \)
\(\displaystyle g(x)=f(-x+3) \)
\(\displaystyle g(x)=-f(x+3) \)
Activity 2.4.20 .
For each of the following, use the information given to find another point on the graph.
(a)
If \((1,6)\) is a point on the graph of \(f(x)\text{,}\) what point must be on the graph of \(-f(x-2)\text{?}\)
(b)
If \((-2,-4)\) is a point on the graph of \(g(x)\text{,}\) what point must be on the graph of \(g(-x)+3\text{?}\)
\(\displaystyle (-2,-7)\)
Activity 2.4.21 .
Consider the following two graphs.
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
(a)
Consider the \(y\) -value of the two graphs at \(x=1\text{.}\) How do they compare?
The
\(y\) -value of
\(2f(x)\) is twice that of
\(f(x)\text{.}\)
The
\(y\) -value of
\(2f(x)\) is half that of
\(f(x)\text{.}\)
The
\(y\) -value of
\(2f(x)\) and
\(f(x)\) are the same.
The
\(y\) -value of
\(2f(x)\) is negative that of
\(f(x)\text{.}\)
(b)
How is the graph of \(2f(x)\) related to that of \(f(x)\text{?}\)
Vertically stretched by a factor of
\(2\)
Vertically compressed by a factor of
\(2\)
Horizontally stretched by a factor of
\(2\)
Horizontally compressed by a factor of
\(2\)
Activity 2.4.22 .
Consider the following two graphs.
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
(a)
Consider an \(x\) -value of the two graphs where \(y=1\text{.}\) How do they compare?
The
\(x\) -value of
\(f(2x)\) is twice that of
\(f(x)\text{.}\)
The
\(x\) -value of
\(f(2x)\) is half that of
\(f(x)\text{.}\)
The
\(x\) -value of
\(f(2x)\) and
\(f(x)\) are the same.
The
\(x\) -value of
\(f(2x)\) is negative that of
\(f(x)\text{.}\)
(b)
How is the graph of \(f(2x)\) related to that of \(f(x)\text{?}\)
Vertically stretched by a factor of
\(2\)
Vertically compressed by a factor of
\(2\)
Horizontally stretched by a factor of
\(2\)
Horizontally compressed by a factor of
\(2\)
Definition 2.4.24 .
Given a function
\(f(x)\text{,}\) the transformed function
\(g(x)=af(x)\) is a
vertical stretch or
vertical compression of the graph of
\(f(x)\text{.}\) That is, all the outputs are multiplied by
\(a\text{.}\) If
\(a \gt 1\text{,}\) the new graph is a vertical stretch of the old graph away from the
\(x\) -axis. If
\(0 \lt a \lt 1\text{,}\) the new graph is a vertical compression of the old graph towards the
\(x\) -axis. Points on the
\(x\) -axis are unchanged.
Definition 2.4.25 .
Given a function
\(f(x)\text{,}\) the transformed function
\(g(x)=f(ax)\) is a
horizontal stretch or
horizontal compression of the graph of
\(f(x)\text{.}\) That is, all the inputs are divided by
\(a\text{.}\) If
\(a \gt 1\text{,}\) the new graph is a horizontal compression of the old graph toward the
\(y\) -axis. If
\(0 \lt a \lt 1\text{,}\) the new graph is a horizontal stretch of the old graph away from the
\(y\) -axis. Points on the
\(y\) -axis are unchanged.
Activity 2.4.33 .
Consider the function
\(g(x)=3\sqrt{-x}+2\)
(a)
Identify the parent function \(f(x)\text{.}\)
\(\displaystyle f(x)=x^{2}\)
\(\displaystyle f(x)=\lvert x \rvert\)
\(\displaystyle f(x)=\sqrt{x}\)
(b)
Graph the parent function
\(f(x)\text{.}\)
Answer .
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
(c)
How is the graph of \(g(x)\) related to that of the parent function\(f(x)\text{?}\)
Reflected over the
\(x\) -axis
Reflected over the
\(y\) -axis
Vertically stretched by a factor of
\(3\)
Horizontally compressed by a factor of
\(3\)
(d)
Graph the transformed function
\(g(x)\text{.}\)
Answer .
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
Activity 2.4.34 .
Consider the following graph of the function
\(g(x)\text{.}\)
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
(a)
Identify the parent function.
\(\displaystyle f(x)=x^{2}\)
\(\displaystyle f(x)=\lvert x \rvert\)
\(\displaystyle f(x)=\sqrt{x}\)
(b)
How is the graph of \(g(x)\) related to that of the parent function\(f(x)\text{?}\)
Reflected over the
\(x\) -axis
Reflected over the
\(y\) -axis
Shifted right
\(2\) units
(c)
Write an equation to represent the transformed function \(g(x)\text{.}\)
\(\displaystyle g(x)=-(x-2)^{2}-3\)
\(\displaystyle g(x)=-(x+2)^{2}+3\)
\(\displaystyle g(x)=(-x+2)^{2}-3\)
\(\displaystyle g(x)=-(x+2)^{2}-3\)
Activity 2.4.35 .
(a)
(b)
(c)
Subsection 2.4.2 Exercises